\(\int \frac {\cot (c+d x)}{(a+b \sec (c+d x))^{3/2}} \, dx\) [338]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [B] (warning: unable to verify)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F(-2)]
   Mupad [F(-1)]

Optimal result

Integrand size = 21, antiderivative size = 142 \[ \int \frac {\cot (c+d x)}{(a+b \sec (c+d x))^{3/2}} \, dx=\frac {2 \text {arctanh}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a}}\right )}{a^{3/2} d}-\frac {\text {arctanh}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a-b}}\right )}{(a-b)^{3/2} d}-\frac {\text {arctanh}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )}{(a+b)^{3/2} d}+\frac {2 b^2}{a \left (a^2-b^2\right ) d \sqrt {a+b \sec (c+d x)}} \]

[Out]

2*arctanh((a+b*sec(d*x+c))^(1/2)/a^(1/2))/a^(3/2)/d-arctanh((a+b*sec(d*x+c))^(1/2)/(a-b)^(1/2))/(a-b)^(3/2)/d-
arctanh((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2))/(a+b)^(3/2)/d+2*b^2/a/(a^2-b^2)/d/(a+b*sec(d*x+c))^(1/2)

Rubi [A] (verified)

Time = 0.26 (sec) , antiderivative size = 142, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.190, Rules used = {3970, 912, 1301, 212} \[ \int \frac {\cot (c+d x)}{(a+b \sec (c+d x))^{3/2}} \, dx=\frac {2 \text {arctanh}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a}}\right )}{a^{3/2} d}+\frac {2 b^2}{a d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}-\frac {\text {arctanh}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a-b}}\right )}{d (a-b)^{3/2}}-\frac {\text {arctanh}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )}{d (a+b)^{3/2}} \]

[In]

Int[Cot[c + d*x]/(a + b*Sec[c + d*x])^(3/2),x]

[Out]

(2*ArcTanh[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a]])/(a^(3/2)*d) - ArcTanh[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a - b]]/((a
- b)^(3/2)*d) - ArcTanh[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]]/((a + b)^(3/2)*d) + (2*b^2)/(a*(a^2 - b^2)*d*Sqr
t[a + b*Sec[c + d*x]])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 912

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> With[{q = De
nominator[m]}, Dist[q/e, Subst[Int[x^(q*(m + 1) - 1)*((e*f - d*g)/e + g*(x^q/e))^n*((c*d^2 + a*e^2)/e^2 - 2*c*
d*(x^q/e^2) + c*(x^(2*q)/e^2))^p, x], x, (d + e*x)^(1/q)], x]] /; FreeQ[{a, c, d, e, f, g}, x] && NeQ[e*f - d*
g, 0] && NeQ[c*d^2 + a*e^2, 0] && IntegersQ[n, p] && FractionQ[m]

Rule 1301

Int[(((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.))/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> Int[Ex
pandIntegrand[(f*x)^m*((d + e*x^2)^q/(a + b*x^2 + c*x^4)), x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b^
2 - 4*a*c, 0] && IntegerQ[q] && IntegerQ[m]

Rule 3970

Int[cot[(c_.) + (d_.)*(x_)]^(m_.)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_), x_Symbol] :> Dist[-(-1)^((m - 1
)/2)/(d*b^(m - 1)), Subst[Int[(b^2 - x^2)^((m - 1)/2)*((a + x)^n/x), x], x, b*Csc[c + d*x]], x] /; FreeQ[{a, b
, c, d, n}, x] && IntegerQ[(m - 1)/2] && NeQ[a^2 - b^2, 0]

Rubi steps \begin{align*} \text {integral}& = -\frac {b^2 \text {Subst}\left (\int \frac {1}{x (a+x)^{3/2} \left (b^2-x^2\right )} \, dx,x,b \sec (c+d x)\right )}{d} \\ & = -\frac {\left (2 b^2\right ) \text {Subst}\left (\int \frac {1}{x^2 \left (-a+x^2\right ) \left (-a^2+b^2+2 a x^2-x^4\right )} \, dx,x,\sqrt {a+b \sec (c+d x)}\right )}{d} \\ & = -\frac {\left (2 b^2\right ) \text {Subst}\left (\int \left (\frac {1}{a \left (a^2-b^2\right ) x^2}-\frac {1}{a b^2 \left (a-x^2\right )}+\frac {1}{2 (a-b) b^2 \left (a-b-x^2\right )}+\frac {1}{2 b^2 (a+b) \left (a+b-x^2\right )}\right ) \, dx,x,\sqrt {a+b \sec (c+d x)}\right )}{d} \\ & = \frac {2 b^2}{a \left (a^2-b^2\right ) d \sqrt {a+b \sec (c+d x)}}+\frac {2 \text {Subst}\left (\int \frac {1}{a-x^2} \, dx,x,\sqrt {a+b \sec (c+d x)}\right )}{a d}-\frac {\text {Subst}\left (\int \frac {1}{a-b-x^2} \, dx,x,\sqrt {a+b \sec (c+d x)}\right )}{(a-b) d}-\frac {\text {Subst}\left (\int \frac {1}{a+b-x^2} \, dx,x,\sqrt {a+b \sec (c+d x)}\right )}{(a+b) d} \\ & = \frac {2 \text {arctanh}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a}}\right )}{a^{3/2} d}-\frac {\text {arctanh}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a-b}}\right )}{(a-b)^{3/2} d}-\frac {\text {arctanh}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )}{(a+b)^{3/2} d}+\frac {2 b^2}{a \left (a^2-b^2\right ) d \sqrt {a+b \sec (c+d x)}} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 0.67 (sec) , antiderivative size = 212, normalized size of antiderivative = 1.49 \[ \int \frac {\cot (c+d x)}{(a+b \sec (c+d x))^{3/2}} \, dx=-\frac {-\frac {\text {arctanh}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a-b}}\right )}{\sqrt {a-b}}+\frac {\text {arctanh}\left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )}{\sqrt {a+b}}-\frac {a \operatorname {Hypergeometric2F1}\left (-\frac {1}{2},1,\frac {1}{2},\frac {a+b \sec (c+d x)}{a-b}\right )}{(a-b) \sqrt {a+b \sec (c+d x)}}+\frac {a \operatorname {Hypergeometric2F1}\left (-\frac {1}{2},1,\frac {1}{2},\frac {a+b \sec (c+d x)}{a+b}\right )}{(a+b) \sqrt {a+b \sec (c+d x)}}+\frac {2 b \operatorname {Hypergeometric2F1}\left (-\frac {1}{2},1,\frac {1}{2},1+\frac {b \sec (c+d x)}{a}\right )}{a \sqrt {a+b \sec (c+d x)}}}{b d} \]

[In]

Integrate[Cot[c + d*x]/(a + b*Sec[c + d*x])^(3/2),x]

[Out]

-((-(ArcTanh[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a - b]]/Sqrt[a - b]) + ArcTanh[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]
]/Sqrt[a + b] - (a*Hypergeometric2F1[-1/2, 1, 1/2, (a + b*Sec[c + d*x])/(a - b)])/((a - b)*Sqrt[a + b*Sec[c +
d*x]]) + (a*Hypergeometric2F1[-1/2, 1, 1/2, (a + b*Sec[c + d*x])/(a + b)])/((a + b)*Sqrt[a + b*Sec[c + d*x]])
+ (2*b*Hypergeometric2F1[-1/2, 1, 1/2, 1 + (b*Sec[c + d*x])/a])/(a*Sqrt[a + b*Sec[c + d*x]]))/(b*d))

Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(2691\) vs. \(2(122)=244\).

Time = 2.22 (sec) , antiderivative size = 2692, normalized size of antiderivative = 18.96

method result size
default \(\text {Expression too large to display}\) \(2692\)

[In]

int(cot(d*x+c)/(a+b*sec(d*x+c))^(3/2),x,method=_RETURNVERBOSE)

[Out]

-1/2/d/(a-b)^(5/2)/a^2/(a+b)^2*(-2*(a-b)^(3/2)*ln(4*cos(d*x+c)*((b+a*cos(d*x+c))*cos(d*x+c)/(cos(d*x+c)+1)^2)^
(1/2)*a^(1/2)+4*a*cos(d*x+c)+4*a^(1/2)*((b+a*cos(d*x+c))*cos(d*x+c)/(cos(d*x+c)+1)^2)^(1/2)+2*b)*cos(d*x+c)*a^
(9/2)-2*(a-b)^(3/2)*a^(7/2)*ln(4*cos(d*x+c)*((b+a*cos(d*x+c))*cos(d*x+c)/(cos(d*x+c)+1)^2)^(1/2)*a^(1/2)+4*a*c
os(d*x+c)+4*a^(1/2)*((b+a*cos(d*x+c))*cos(d*x+c)/(cos(d*x+c)+1)^2)^(1/2)+2*b)*b*cos(d*x+c)-2*(a-b)^(3/2)*a^(7/
2)*ln(4*cos(d*x+c)*((b+a*cos(d*x+c))*cos(d*x+c)/(cos(d*x+c)+1)^2)^(1/2)*a^(1/2)+4*a*cos(d*x+c)+4*a^(1/2)*((b+a
*cos(d*x+c))*cos(d*x+c)/(cos(d*x+c)+1)^2)^(1/2)+2*b)*b+2*(a-b)^(3/2)*ln(4*cos(d*x+c)*((b+a*cos(d*x+c))*cos(d*x
+c)/(cos(d*x+c)+1)^2)^(1/2)*a^(1/2)+4*a*cos(d*x+c)+4*a^(1/2)*((b+a*cos(d*x+c))*cos(d*x+c)/(cos(d*x+c)+1)^2)^(1
/2)+2*b)*cos(d*x+c)*a^(5/2)*b^2-2*(a-b)^(3/2)*ln(4*cos(d*x+c)*((b+a*cos(d*x+c))*cos(d*x+c)/(cos(d*x+c)+1)^2)^(
1/2)*a^(1/2)+4*a*cos(d*x+c)+4*a^(1/2)*((b+a*cos(d*x+c))*cos(d*x+c)/(cos(d*x+c)+1)^2)^(1/2)+2*b)*a^(5/2)*b^2+2*
(a-b)^(3/2)*a^(3/2)*ln(4*cos(d*x+c)*((b+a*cos(d*x+c))*cos(d*x+c)/(cos(d*x+c)+1)^2)^(1/2)*a^(1/2)+4*a*cos(d*x+c
)+4*a^(1/2)*((b+a*cos(d*x+c))*cos(d*x+c)/(cos(d*x+c)+1)^2)^(1/2)+2*b)*b^3*cos(d*x+c)+(a+b)^(1/2)*(a-b)^(3/2)*l
n(-2*(2*cos(d*x+c)*((b+a*cos(d*x+c))*cos(d*x+c)/(cos(d*x+c)+1)^2)^(1/2)*(a+b)^(1/2)+2*a*cos(d*x+c)+cos(d*x+c)*
b+2*(a+b)^(1/2)*((b+a*cos(d*x+c))*cos(d*x+c)/(cos(d*x+c)+1)^2)^(1/2)+b)/(cos(d*x+c)-1))*cos(d*x+c)*a^4-(a+b)^(
1/2)*(a-b)^(3/2)*ln(-2*(2*cos(d*x+c)*((b+a*cos(d*x+c))*cos(d*x+c)/(cos(d*x+c)+1)^2)^(1/2)*(a+b)^(1/2)+2*a*cos(
d*x+c)+cos(d*x+c)*b+2*(a+b)^(1/2)*((b+a*cos(d*x+c))*cos(d*x+c)/(cos(d*x+c)+1)^2)^(1/2)+b)/(cos(d*x+c)-1))*cos(
d*x+c)*a^3*b+2*(a-b)^(3/2)*a^(3/2)*ln(4*cos(d*x+c)*((b+a*cos(d*x+c))*cos(d*x+c)/(cos(d*x+c)+1)^2)^(1/2)*a^(1/2
)+4*a*cos(d*x+c)+4*a^(1/2)*((b+a*cos(d*x+c))*cos(d*x+c)/(cos(d*x+c)+1)^2)^(1/2)+2*b)*b^3+(a+b)^(1/2)*(a-b)^(3/
2)*ln(-2*(2*cos(d*x+c)*((b+a*cos(d*x+c))*cos(d*x+c)/(cos(d*x+c)+1)^2)^(1/2)*(a+b)^(1/2)+2*a*cos(d*x+c)+cos(d*x
+c)*b+2*(a+b)^(1/2)*((b+a*cos(d*x+c))*cos(d*x+c)/(cos(d*x+c)+1)^2)^(1/2)+b)/(cos(d*x+c)-1))*a^3*b-(a+b)^(1/2)*
(a-b)^(3/2)*ln(-2*(2*cos(d*x+c)*((b+a*cos(d*x+c))*cos(d*x+c)/(cos(d*x+c)+1)^2)^(1/2)*(a+b)^(1/2)+2*a*cos(d*x+c
)+cos(d*x+c)*b+2*(a+b)^(1/2)*((b+a*cos(d*x+c))*cos(d*x+c)/(cos(d*x+c)+1)^2)^(1/2)+b)/(cos(d*x+c)-1))*a^2*b^2-4
*(a-b)^(3/2)*((b+a*cos(d*x+c))*cos(d*x+c)/(cos(d*x+c)+1)^2)^(1/2)*a^2*b^2*cos(d*x+c)-4*(a-b)^(3/2)*((b+a*cos(d
*x+c))*cos(d*x+c)/(cos(d*x+c)+1)^2)^(1/2)*a*b^3*cos(d*x+c)+2*(a-b)^(3/2)*ln(4*cos(d*x+c)*((b+a*cos(d*x+c))*cos
(d*x+c)/(cos(d*x+c)+1)^2)^(1/2)*a^(1/2)+4*a*cos(d*x+c)+4*a^(1/2)*((b+a*cos(d*x+c))*cos(d*x+c)/(cos(d*x+c)+1)^2
)^(1/2)+2*b)*a^(1/2)*b^4-4*(a-b)^(3/2)*((b+a*cos(d*x+c))*cos(d*x+c)/(cos(d*x+c)+1)^2)^(1/2)*a^2*b^2-4*(a-b)^(3
/2)*((b+a*cos(d*x+c))*cos(d*x+c)/(cos(d*x+c)+1)^2)^(1/2)*a*b^3-ln(1/(a-b)^(1/2)*(2*(a-b)^(1/2)*((b+a*cos(d*x+c
))*cos(d*x+c)/(cos(d*x+c)+1)^2)^(1/2)*cos(d*x+c)+2*((b+a*cos(d*x+c))*cos(d*x+c)/(cos(d*x+c)+1)^2)^(1/2)*(a-b)^
(1/2)-2*a*cos(d*x+c)+cos(d*x+c)*b-b)/(cos(d*x+c)+1))*cos(d*x+c)*a^6-ln(1/(a-b)^(1/2)*(2*(a-b)^(1/2)*((b+a*cos(
d*x+c))*cos(d*x+c)/(cos(d*x+c)+1)^2)^(1/2)*cos(d*x+c)+2*((b+a*cos(d*x+c))*cos(d*x+c)/(cos(d*x+c)+1)^2)^(1/2)*(
a-b)^(1/2)-2*a*cos(d*x+c)+cos(d*x+c)*b-b)/(cos(d*x+c)+1))*a^5*b*cos(d*x+c)+ln(1/(a-b)^(1/2)*(2*(a-b)^(1/2)*((b
+a*cos(d*x+c))*cos(d*x+c)/(cos(d*x+c)+1)^2)^(1/2)*cos(d*x+c)+2*((b+a*cos(d*x+c))*cos(d*x+c)/(cos(d*x+c)+1)^2)^
(1/2)*(a-b)^(1/2)-2*a*cos(d*x+c)+cos(d*x+c)*b-b)/(cos(d*x+c)+1))*cos(d*x+c)*a^4*b^2+ln(1/(a-b)^(1/2)*(2*(a-b)^
(1/2)*((b+a*cos(d*x+c))*cos(d*x+c)/(cos(d*x+c)+1)^2)^(1/2)*cos(d*x+c)+2*((b+a*cos(d*x+c))*cos(d*x+c)/(cos(d*x+
c)+1)^2)^(1/2)*(a-b)^(1/2)-2*a*cos(d*x+c)+cos(d*x+c)*b-b)/(cos(d*x+c)+1))*a^3*b^3*cos(d*x+c)-ln(1/(a-b)^(1/2)*
(2*(a-b)^(1/2)*((b+a*cos(d*x+c))*cos(d*x+c)/(cos(d*x+c)+1)^2)^(1/2)*cos(d*x+c)+2*((b+a*cos(d*x+c))*cos(d*x+c)/
(cos(d*x+c)+1)^2)^(1/2)*(a-b)^(1/2)-2*a*cos(d*x+c)+cos(d*x+c)*b-b)/(cos(d*x+c)+1))*a^5*b-ln(1/(a-b)^(1/2)*(2*(
a-b)^(1/2)*((b+a*cos(d*x+c))*cos(d*x+c)/(cos(d*x+c)+1)^2)^(1/2)*cos(d*x+c)+2*((b+a*cos(d*x+c))*cos(d*x+c)/(cos
(d*x+c)+1)^2)^(1/2)*(a-b)^(1/2)-2*a*cos(d*x+c)+cos(d*x+c)*b-b)/(cos(d*x+c)+1))*a^4*b^2+ln(1/(a-b)^(1/2)*(2*(a-
b)^(1/2)*((b+a*cos(d*x+c))*cos(d*x+c)/(cos(d*x+c)+1)^2)^(1/2)*cos(d*x+c)+2*((b+a*cos(d*x+c))*cos(d*x+c)/(cos(d
*x+c)+1)^2)^(1/2)*(a-b)^(1/2)-2*a*cos(d*x+c)+cos(d*x+c)*b-b)/(cos(d*x+c)+1))*a^3*b^3+ln(1/(a-b)^(1/2)*(2*(a-b)
^(1/2)*((b+a*cos(d*x+c))*cos(d*x+c)/(cos(d*x+c)+1)^2)^(1/2)*cos(d*x+c)+2*((b+a*cos(d*x+c))*cos(d*x+c)/(cos(d*x
+c)+1)^2)^(1/2)*(a-b)^(1/2)-2*a*cos(d*x+c)+cos(d*x+c)*b-b)/(cos(d*x+c)+1))*a^2*b^4)*cos(d*x+c)*(a+b*sec(d*x+c)
)^(1/2)/(b+a*cos(d*x+c))/((b+a*cos(d*x+c))*cos(d*x+c)/(cos(d*x+c)+1)^2)^(1/2)/(cos(d*x+c)+1)

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 414 vs. \(2 (122) = 244\).

Time = 24.54 (sec) , antiderivative size = 3924, normalized size of antiderivative = 27.63 \[ \int \frac {\cot (c+d x)}{(a+b \sec (c+d x))^{3/2}} \, dx=\text {Too large to display} \]

[In]

integrate(cot(d*x+c)/(a+b*sec(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

[1/4*(8*(a^3*b^2 - a*b^4)*sqrt((a*cos(d*x + c) + b)/cos(d*x + c))*cos(d*x + c) + 2*(a^4*b - 2*a^2*b^3 + b^5 +
(a^5 - 2*a^3*b^2 + a*b^4)*cos(d*x + c))*sqrt(a)*log(-8*a^2*cos(d*x + c)^2 - 8*a*b*cos(d*x + c) - b^2 - 4*(2*a*
cos(d*x + c)^2 + b*cos(d*x + c))*sqrt(a)*sqrt((a*cos(d*x + c) + b)/cos(d*x + c))) - (a^4*b + 2*a^3*b^2 + a^2*b
^3 + (a^5 + 2*a^4*b + a^3*b^2)*cos(d*x + c))*sqrt(a - b)*log(-((8*a^2 - 8*a*b + b^2)*cos(d*x + c)^2 + b^2 + 4*
((2*a - b)*cos(d*x + c)^2 + b*cos(d*x + c))*sqrt(a - b)*sqrt((a*cos(d*x + c) + b)/cos(d*x + c)) + 2*(4*a*b - 3
*b^2)*cos(d*x + c))/(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)) + (a^4*b - 2*a^3*b^2 + a^2*b^3 + (a^5 - 2*a^4*b + a
^3*b^2)*cos(d*x + c))*sqrt(a + b)*log(-((8*a^2 + 8*a*b + b^2)*cos(d*x + c)^2 + b^2 - 4*((2*a + b)*cos(d*x + c)
^2 + b*cos(d*x + c))*sqrt(a + b)*sqrt((a*cos(d*x + c) + b)/cos(d*x + c)) + 2*(4*a*b + 3*b^2)*cos(d*x + c))/(co
s(d*x + c)^2 - 2*cos(d*x + c) + 1)))/((a^7 - 2*a^5*b^2 + a^3*b^4)*d*cos(d*x + c) + (a^6*b - 2*a^4*b^3 + a^2*b^
5)*d), -1/4*(4*(a^4*b - 2*a^2*b^3 + b^5 + (a^5 - 2*a^3*b^2 + a*b^4)*cos(d*x + c))*sqrt(-a)*arctan(2*sqrt(-a)*s
qrt((a*cos(d*x + c) + b)/cos(d*x + c))*cos(d*x + c)/(2*a*cos(d*x + c) + b)) - 8*(a^3*b^2 - a*b^4)*sqrt((a*cos(
d*x + c) + b)/cos(d*x + c))*cos(d*x + c) + (a^4*b + 2*a^3*b^2 + a^2*b^3 + (a^5 + 2*a^4*b + a^3*b^2)*cos(d*x +
c))*sqrt(a - b)*log(-((8*a^2 - 8*a*b + b^2)*cos(d*x + c)^2 + b^2 + 4*((2*a - b)*cos(d*x + c)^2 + b*cos(d*x + c
))*sqrt(a - b)*sqrt((a*cos(d*x + c) + b)/cos(d*x + c)) + 2*(4*a*b - 3*b^2)*cos(d*x + c))/(cos(d*x + c)^2 + 2*c
os(d*x + c) + 1)) - (a^4*b - 2*a^3*b^2 + a^2*b^3 + (a^5 - 2*a^4*b + a^3*b^2)*cos(d*x + c))*sqrt(a + b)*log(-((
8*a^2 + 8*a*b + b^2)*cos(d*x + c)^2 + b^2 - 4*((2*a + b)*cos(d*x + c)^2 + b*cos(d*x + c))*sqrt(a + b)*sqrt((a*
cos(d*x + c) + b)/cos(d*x + c)) + 2*(4*a*b + 3*b^2)*cos(d*x + c))/(cos(d*x + c)^2 - 2*cos(d*x + c) + 1)))/((a^
7 - 2*a^5*b^2 + a^3*b^4)*d*cos(d*x + c) + (a^6*b - 2*a^4*b^3 + a^2*b^5)*d), -1/4*(2*(a^4*b + 2*a^3*b^2 + a^2*b
^3 + (a^5 + 2*a^4*b + a^3*b^2)*cos(d*x + c))*sqrt(-a + b)*arctan(-2*sqrt(-a + b)*sqrt((a*cos(d*x + c) + b)/cos
(d*x + c))*cos(d*x + c)/((2*a - b)*cos(d*x + c) + b)) - 8*(a^3*b^2 - a*b^4)*sqrt((a*cos(d*x + c) + b)/cos(d*x
+ c))*cos(d*x + c) - 2*(a^4*b - 2*a^2*b^3 + b^5 + (a^5 - 2*a^3*b^2 + a*b^4)*cos(d*x + c))*sqrt(a)*log(-8*a^2*c
os(d*x + c)^2 - 8*a*b*cos(d*x + c) - b^2 - 4*(2*a*cos(d*x + c)^2 + b*cos(d*x + c))*sqrt(a)*sqrt((a*cos(d*x + c
) + b)/cos(d*x + c))) - (a^4*b - 2*a^3*b^2 + a^2*b^3 + (a^5 - 2*a^4*b + a^3*b^2)*cos(d*x + c))*sqrt(a + b)*log
(-((8*a^2 + 8*a*b + b^2)*cos(d*x + c)^2 + b^2 - 4*((2*a + b)*cos(d*x + c)^2 + b*cos(d*x + c))*sqrt(a + b)*sqrt
((a*cos(d*x + c) + b)/cos(d*x + c)) + 2*(4*a*b + 3*b^2)*cos(d*x + c))/(cos(d*x + c)^2 - 2*cos(d*x + c) + 1)))/
((a^7 - 2*a^5*b^2 + a^3*b^4)*d*cos(d*x + c) + (a^6*b - 2*a^4*b^3 + a^2*b^5)*d), -1/4*(4*(a^4*b - 2*a^2*b^3 + b
^5 + (a^5 - 2*a^3*b^2 + a*b^4)*cos(d*x + c))*sqrt(-a)*arctan(2*sqrt(-a)*sqrt((a*cos(d*x + c) + b)/cos(d*x + c)
)*cos(d*x + c)/(2*a*cos(d*x + c) + b)) + 2*(a^4*b + 2*a^3*b^2 + a^2*b^3 + (a^5 + 2*a^4*b + a^3*b^2)*cos(d*x +
c))*sqrt(-a + b)*arctan(-2*sqrt(-a + b)*sqrt((a*cos(d*x + c) + b)/cos(d*x + c))*cos(d*x + c)/((2*a - b)*cos(d*
x + c) + b)) - 8*(a^3*b^2 - a*b^4)*sqrt((a*cos(d*x + c) + b)/cos(d*x + c))*cos(d*x + c) - (a^4*b - 2*a^3*b^2 +
 a^2*b^3 + (a^5 - 2*a^4*b + a^3*b^2)*cos(d*x + c))*sqrt(a + b)*log(-((8*a^2 + 8*a*b + b^2)*cos(d*x + c)^2 + b^
2 - 4*((2*a + b)*cos(d*x + c)^2 + b*cos(d*x + c))*sqrt(a + b)*sqrt((a*cos(d*x + c) + b)/cos(d*x + c)) + 2*(4*a
*b + 3*b^2)*cos(d*x + c))/(cos(d*x + c)^2 - 2*cos(d*x + c) + 1)))/((a^7 - 2*a^5*b^2 + a^3*b^4)*d*cos(d*x + c)
+ (a^6*b - 2*a^4*b^3 + a^2*b^5)*d), 1/4*(2*(a^4*b - 2*a^3*b^2 + a^2*b^3 + (a^5 - 2*a^4*b + a^3*b^2)*cos(d*x +
c))*sqrt(-a - b)*arctan(2*sqrt(-a - b)*sqrt((a*cos(d*x + c) + b)/cos(d*x + c))*cos(d*x + c)/((2*a + b)*cos(d*x
 + c) + b)) + 8*(a^3*b^2 - a*b^4)*sqrt((a*cos(d*x + c) + b)/cos(d*x + c))*cos(d*x + c) + 2*(a^4*b - 2*a^2*b^3
+ b^5 + (a^5 - 2*a^3*b^2 + a*b^4)*cos(d*x + c))*sqrt(a)*log(-8*a^2*cos(d*x + c)^2 - 8*a*b*cos(d*x + c) - b^2 -
 4*(2*a*cos(d*x + c)^2 + b*cos(d*x + c))*sqrt(a)*sqrt((a*cos(d*x + c) + b)/cos(d*x + c))) - (a^4*b + 2*a^3*b^2
 + a^2*b^3 + (a^5 + 2*a^4*b + a^3*b^2)*cos(d*x + c))*sqrt(a - b)*log(-((8*a^2 - 8*a*b + b^2)*cos(d*x + c)^2 +
b^2 + 4*((2*a - b)*cos(d*x + c)^2 + b*cos(d*x + c))*sqrt(a - b)*sqrt((a*cos(d*x + c) + b)/cos(d*x + c)) + 2*(4
*a*b - 3*b^2)*cos(d*x + c))/(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)))/((a^7 - 2*a^5*b^2 + a^3*b^4)*d*cos(d*x + c
) + (a^6*b - 2*a^4*b^3 + a^2*b^5)*d), -1/4*(4*(a^4*b - 2*a^2*b^3 + b^5 + (a^5 - 2*a^3*b^2 + a*b^4)*cos(d*x + c
))*sqrt(-a)*arctan(2*sqrt(-a)*sqrt((a*cos(d*x + c) + b)/cos(d*x + c))*cos(d*x + c)/(2*a*cos(d*x + c) + b)) - 2
*(a^4*b - 2*a^3*b^2 + a^2*b^3 + (a^5 - 2*a^4*b + a^3*b^2)*cos(d*x + c))*sqrt(-a - b)*arctan(2*sqrt(-a - b)*sqr
t((a*cos(d*x + c) + b)/cos(d*x + c))*cos(d*x + c)/((2*a + b)*cos(d*x + c) + b)) - 8*(a^3*b^2 - a*b^4)*sqrt((a*
cos(d*x + c) + b)/cos(d*x + c))*cos(d*x + c) + (a^4*b + 2*a^3*b^2 + a^2*b^3 + (a^5 + 2*a^4*b + a^3*b^2)*cos(d*
x + c))*sqrt(a - b)*log(-((8*a^2 - 8*a*b + b^2)*cos(d*x + c)^2 + b^2 + 4*((2*a - b)*cos(d*x + c)^2 + b*cos(d*x
 + c))*sqrt(a - b)*sqrt((a*cos(d*x + c) + b)/cos(d*x + c)) + 2*(4*a*b - 3*b^2)*cos(d*x + c))/(cos(d*x + c)^2 +
 2*cos(d*x + c) + 1)))/((a^7 - 2*a^5*b^2 + a^3*b^4)*d*cos(d*x + c) + (a^6*b - 2*a^4*b^3 + a^2*b^5)*d), -1/2*((
a^4*b + 2*a^3*b^2 + a^2*b^3 + (a^5 + 2*a^4*b + a^3*b^2)*cos(d*x + c))*sqrt(-a + b)*arctan(-2*sqrt(-a + b)*sqrt
((a*cos(d*x + c) + b)/cos(d*x + c))*cos(d*x + c)/((2*a - b)*cos(d*x + c) + b)) - (a^4*b - 2*a^3*b^2 + a^2*b^3
+ (a^5 - 2*a^4*b + a^3*b^2)*cos(d*x + c))*sqrt(-a - b)*arctan(2*sqrt(-a - b)*sqrt((a*cos(d*x + c) + b)/cos(d*x
 + c))*cos(d*x + c)/((2*a + b)*cos(d*x + c) + b)) - 4*(a^3*b^2 - a*b^4)*sqrt((a*cos(d*x + c) + b)/cos(d*x + c)
)*cos(d*x + c) - (a^4*b - 2*a^2*b^3 + b^5 + (a^5 - 2*a^3*b^2 + a*b^4)*cos(d*x + c))*sqrt(a)*log(-8*a^2*cos(d*x
 + c)^2 - 8*a*b*cos(d*x + c) - b^2 - 4*(2*a*cos(d*x + c)^2 + b*cos(d*x + c))*sqrt(a)*sqrt((a*cos(d*x + c) + b)
/cos(d*x + c))))/((a^7 - 2*a^5*b^2 + a^3*b^4)*d*cos(d*x + c) + (a^6*b - 2*a^4*b^3 + a^2*b^5)*d), -1/2*(2*(a^4*
b - 2*a^2*b^3 + b^5 + (a^5 - 2*a^3*b^2 + a*b^4)*cos(d*x + c))*sqrt(-a)*arctan(2*sqrt(-a)*sqrt((a*cos(d*x + c)
+ b)/cos(d*x + c))*cos(d*x + c)/(2*a*cos(d*x + c) + b)) + (a^4*b + 2*a^3*b^2 + a^2*b^3 + (a^5 + 2*a^4*b + a^3*
b^2)*cos(d*x + c))*sqrt(-a + b)*arctan(-2*sqrt(-a + b)*sqrt((a*cos(d*x + c) + b)/cos(d*x + c))*cos(d*x + c)/((
2*a - b)*cos(d*x + c) + b)) - (a^4*b - 2*a^3*b^2 + a^2*b^3 + (a^5 - 2*a^4*b + a^3*b^2)*cos(d*x + c))*sqrt(-a -
 b)*arctan(2*sqrt(-a - b)*sqrt((a*cos(d*x + c) + b)/cos(d*x + c))*cos(d*x + c)/((2*a + b)*cos(d*x + c) + b)) -
 4*(a^3*b^2 - a*b^4)*sqrt((a*cos(d*x + c) + b)/cos(d*x + c))*cos(d*x + c))/((a^7 - 2*a^5*b^2 + a^3*b^4)*d*cos(
d*x + c) + (a^6*b - 2*a^4*b^3 + a^2*b^5)*d)]

Sympy [F]

\[ \int \frac {\cot (c+d x)}{(a+b \sec (c+d x))^{3/2}} \, dx=\int \frac {\cot {\left (c + d x \right )}}{\left (a + b \sec {\left (c + d x \right )}\right )^{\frac {3}{2}}}\, dx \]

[In]

integrate(cot(d*x+c)/(a+b*sec(d*x+c))**(3/2),x)

[Out]

Integral(cot(c + d*x)/(a + b*sec(c + d*x))**(3/2), x)

Maxima [F]

\[ \int \frac {\cot (c+d x)}{(a+b \sec (c+d x))^{3/2}} \, dx=\int { \frac {\cot \left (d x + c\right )}{{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \]

[In]

integrate(cot(d*x+c)/(a+b*sec(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate(cot(d*x + c)/(b*sec(d*x + c) + a)^(3/2), x)

Giac [F(-2)]

Exception generated. \[ \int \frac {\cot (c+d x)}{(a+b \sec (c+d x))^{3/2}} \, dx=\text {Exception raised: TypeError} \]

[In]

integrate(cot(d*x+c)/(a+b*sec(d*x+c))^(3/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> an error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:Error: Bad Argument Type

Mupad [F(-1)]

Timed out. \[ \int \frac {\cot (c+d x)}{(a+b \sec (c+d x))^{3/2}} \, dx=\int \frac {\mathrm {cot}\left (c+d\,x\right )}{{\left (a+\frac {b}{\cos \left (c+d\,x\right )}\right )}^{3/2}} \,d x \]

[In]

int(cot(c + d*x)/(a + b/cos(c + d*x))^(3/2),x)

[Out]

int(cot(c + d*x)/(a + b/cos(c + d*x))^(3/2), x)